Systemic control of brown fat thermogenesis: integration of peripheral and central signals.
نویسندگان
چکیده
Brown adipose tissue (BAT) is of great scientific interest as a potential target to treat obesity. The development of novel strategies to quantify brown fat thermogenesis in adult humans now enables minimally invasive assessment of novel pharmacotherapeutics. Input from the central nervous system via sympathetic efferents is widely regarded as the key controller of BAT-mediated thermogenesis in response to changes in body temperature or nutrient availability. More recently, however, it has become clear that locally secreted signals and endocrine factors originating from multiple organs can control the recruitment of brown adipocytes and, more importantly, induce thermogenesis in brown fat. Thus, they provide an attractive strategy to fine-tune brown fat thermogenesis independent of classical temperature sensing. Here, we summarize recent findings on bone morphogenetic protein signaling as an example of secreted factors in the regulation of brown adipocyte formation and systemic control of energy metabolism. We further highlight endocrine communication routes between the different types of brown adipocytes and other organs that contribute to regulation of thermogenesis. Thus, emerging evidence suggests that the classical mechanisms of central temperature sensing and sympathetic nervous system-driven thermogenesis are complemented by local and endocrine signals to determine systemic energy homeostasis.
منابع مشابه
Cerebral Thermoregulatory Control of Brown Adipose Tissue: a PET/fMRI Study
Introduction: For the defense of body temperature, efferent signals from central thermoregulatory networks regulate metabolism in specific thermogenic tissues. Among them, nonshivering thermogenesis in brown adipose tissue (BAT) has been implicated as a heat source for the defense of body temperature in cold environments. The presence of coldactivated BAT depots is highly variable in humans for...
متن کاملDuodenal Lipid Sensing Activates Vagal Afferents to Regulate Non-Shivering Brown Fat Thermogenesis in Rats
Previous evidence indicates that duodenal lipid sensing engages gut-brain neurocircuits to determine food intake and hepatic glucose production, but a potential role for gut-brain communication in the control of energy expenditure remains to be determined. Here, we tested the hypothesis that duodenal lipid sensing activates a gut-brain-brown adipose tissue neuraxis to regulate thermogenesis. We...
متن کاملTraveling from the hypothalamus to the adipose tissue: The thermogenic pathway
Brown adipose tissue (BAT) is a specialized tissue critical for non-shivering thermogenesis producing heat through mitochondrial uncoupling; whereas white adipose tissue (WAT) is responsible of energy storage in the form of triglycerides. Another type of fat has been described, the beige adipose tissue; this tissue emerges in existing WAT depots but with thermogenic ability, a phenomenon known ...
متن کاملNeuronal Control of Adaptive Thermogenesis
The obesity epidemic continues rising as a global health challenge, despite the increasing public awareness and the use of lifestyle and medical interventions. The biomedical community is urged to develop new treatments to obesity. Excess energy is stored as fat in white adipose tissue (WAT), dysfunction of which lies at the core of obesity and associated metabolic disorders. By contrast, brown...
متن کاملPii: S0304-3940(02)00757-7
To investigate the involvement of the periaqueductal gray (PAG) in the control of non-shivering thermogenesis, we tested the effects of electrical or chemical stimulation of the PAG on thermogenesis of brown adipose tissue (BAT) in urethane anesthetized rats. Electrical stimulation (0.1 mA, 33 Hz, 0.5 ms) or application of d,l-homocysteic acid (0.5 mM, 0.3 ml) into the lateral region of the cau...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of the New York Academy of Sciences
دوره 1302 شماره
صفحات -
تاریخ انتشار 2013